Stochastic parametric resonance in shear flows
نویسنده
چکیده
Time-periodic shear flows can give rise to Parametric Instability (PI), as in the case of the Mathieu equation (Stoker, 1950; Nayfeh and Mook, 1995). This mechanism results from a resonance between the oscillatory basic state and waves that are superimposed on it. Farrell and Ioannou (1996a, b) explain that PI occurs because the snapshots of the velocity profile are subject to transient growth. If the flows were purely steady the transient growth would subside and not have any long lasting effect. However, the coupling between transient growth and the time variation of the basic state create PI. Mathematically, transient growth, and therefore PI, are due to the nonorthogonal eigenspace in the linearized system. Poulin et al. (2003) studied a time-periodic barotropic shear flow that exhibited PI, and thereby produced mixing at the interface between Potential Vorticity (PV) fronts. The instability led to the formation of vortices that were stretched. A later study of an oscillatory current in the Cape Cod Bay illustrated that PI can occur in realistic shear flows (Poulin and Flierl, 2005)1. These studies assumed that the basic state was periodic with a constant frequency and amplitude. In this work we study a shear flow similar to that found in Poulin et al. (2003), but now where the magnitude of vorticity is a stochastic variable. We determine that in the case of stochastic shear flows the transient growth of perturbations of the snapshots of the basic state still generate PI.
منابع مشابه
Combination Resonance of Nonlinear Rotating Balanced Shafts Subjected to Periodic Axial Load
Dynamic behavior of a circular shaft with geometrical nonlinearity and constant spin, subjected to periodic axial load is investigated. The case of parametric combination resonance is studied. Extension of shaft center line is the source of nonlinearity. The shaft has gyroscopic effect and rotary inertia but shear deformation is neglected. The equations of motion are derived by extended Hamilto...
متن کاملVariational Principle of KPP Front Speeds in Temporally Random Shear Flows with Applications
We establish the variational principle of Kolmogorov-PetrovskyPiskunov (KPP) front speeds in temporally random shear flows inside an infinite cylinder, under suitable assumptions of the shear field. A key quantity in the variational principle is the almost sure Lyapunov exponent of a heat operator with random potential. The variational principle then allows us to bound and compute the front spe...
متن کاملPrecessing sphere Shear-driven parametric instability in a precessing sphere
The present numerical study aims at shedding light on the mechanism underlying the precessional instability in a sphere. Precessional instabilities in the form of parametric resonance due to topographic coupling have been reported in a spheroidal geometry both analytically and numerically. We show that such parametric resonances can also develop in spherical geometry due to the conical shear la...
متن کاملParametric instability in oscillatory shear flows
In this article we investigate time-periodic shear flows in the context of the twodimensional vorticity equation, which may be applied to describe certain large-scale atmospheric and oceanic flows. The linear stability analyses of both discrete and continuous profiles demonstrate that parametric instability can arise even in this simple model: the oscillations can stabilize (destabilize) an oth...
متن کاملEfficient Higher-Order Shear Deformation Theories for Instability Analysis of Plates Carrying a Mass Moving on an Elliptical Path
The dynamic performance of structures under traveling loads should be exactly analyzed to have a safe and reasonable structural design. Different higher-order shear deformation theories are proposed in this paper to analyze the dynamic stability of thick elastic plates carrying a moving mass. The displacement fields of different theories are chosen based upon variations along the thickness as c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005